Hybrid organic-inorganic perovskites are very promising semiconductors for many optoelectronic applications, although their extensive use is limited by their poor stability under environmental conditions. In this work, we synthesize two-dimensional perovskite single crystals and investigate their optical and structural evolution under continuous light irradiation. We found that the hydrophobic nature of the fluorinated component, together with the absence of grain boundary defects, lead to improved material stability thanks to the creation of a robust barrier that preserve the crystalline structure, hindering photo-degradation processes usually promoted by oxygen and moisture.

Improved Photostability in Fluorinated 2D Perovskite Single Crystals

Coriolano, Annalisa;Polimeno, Laura;De Giorgi, Milena;Mastria, Rosanna;Ardizzone, Vincenzo;Gigli, Giuseppe;
2021

Abstract

Hybrid organic-inorganic perovskites are very promising semiconductors for many optoelectronic applications, although their extensive use is limited by their poor stability under environmental conditions. In this work, we synthesize two-dimensional perovskite single crystals and investigate their optical and structural evolution under continuous light irradiation. We found that the hydrophobic nature of the fluorinated component, together with the absence of grain boundary defects, lead to improved material stability thanks to the creation of a robust barrier that preserve the crystalline structure, hindering photo-degradation processes usually promoted by oxygen and moisture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/467874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact