Invited for the cover of this issue are Anil Chandra, Loretta L. del Mercato and co-workers at the Institute of Nanotechnology of National Research Council and the University of Salento. The image depicts how negatively charged pH-sensitive pyranine (HPTS) molecules were successfully immobilized on silica microparticles (SMPs) without compromising the molecules' pH sensitivity. These resulting sensors can be used to measure pH in vitro and in vivo due to the cytocompatibility of HPTS molecules and SMPs. Read the full text of the article at 10.1002/chem.202101568.

Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles

D'Amone, Eliana;Gigli, Giuseppe;Del Mercato, Loretta L
2021-01-01

Abstract

Invited for the cover of this issue are Anil Chandra, Loretta L. del Mercato and co-workers at the Institute of Nanotechnology of National Research Council and the University of Salento. The image depicts how negatively charged pH-sensitive pyranine (HPTS) molecules were successfully immobilized on silica microparticles (SMPs) without compromising the molecules' pH sensitivity. These resulting sensors can be used to measure pH in vitro and in vivo due to the cytocompatibility of HPTS molecules and SMPs. Read the full text of the article at 10.1002/chem.202101568.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/467856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact