Hydrogels represent a key element in the development of in vitro tumor models, by mimicking the typical 3D tumor architecture in a physicochemical manner and allowing the study of tumor mechanisms. Here we developed a thermo-sensitive, natural polymer-based hydrogel, where chitosan and pectin were mixed and, after a weak base-induced chitosan gelation, a stable semi-Interpenetrating Polymer Network formed. This resulted thermo-responsive at 37 °C, injectable at room temperature, stable up to 6 weeks in vitro, permeable to small/medium-sized molecules (3 to 70 kDa) and suitable for cell-encapsulation. Tunable mechanical and permeability properties were obtained by varying the polymer content. Optimized formulations successfully supported the formation and growth of human colorectal cancer spheroids up to 44 days of culture. The spheroid dimension and density were influenced by the semi-IPN stiffness and permeability. These encouraging results would allow the implementation of faithful tumor models for the study and development of personalized oncological treatments.

A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture

Morello, Giulia;Quarta, Alessandra;Gigli, Giuseppe;Polini, Alessandro;Gervaso, Francesca
2021-01-01

Abstract

Hydrogels represent a key element in the development of in vitro tumor models, by mimicking the typical 3D tumor architecture in a physicochemical manner and allowing the study of tumor mechanisms. Here we developed a thermo-sensitive, natural polymer-based hydrogel, where chitosan and pectin were mixed and, after a weak base-induced chitosan gelation, a stable semi-Interpenetrating Polymer Network formed. This resulted thermo-responsive at 37 °C, injectable at room temperature, stable up to 6 weeks in vitro, permeable to small/medium-sized molecules (3 to 70 kDa) and suitable for cell-encapsulation. Tunable mechanical and permeability properties were obtained by varying the polymer content. Optimized formulations successfully supported the formation and growth of human colorectal cancer spheroids up to 44 days of culture. The spheroid dimension and density were influenced by the semi-IPN stiffness and permeability. These encouraging results would allow the implementation of faithful tumor models for the study and development of personalized oncological treatments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/467850
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact