Let G be a simple group with an exceptional involution a having H as fixed point set. We study the embedding of G/H in the projective space ℙ(V) for a simple G-module V with a line fixed by H but having no nonzero vector fixed by H. For a certain class of such modules V we describe the closure of G/H proving in particular that it is a smooth variety.

On exceptional completions of symmetric varieties

Chirivi' Rocco;
2006

Abstract

Let G be a simple group with an exceptional involution a having H as fixed point set. We study the embedding of G/H in the projective space ℙ(V) for a simple G-module V with a line fixed by H but having no nonzero vector fixed by H. For a certain class of such modules V we describe the closure of G/H proving in particular that it is a smooth variety.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/467684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact