Acoustic communications are experiencing renewed interest as alternative solutions to traditional RF communications, not only in RF-denied environments (such as underwater) but also in areas where the electromagnetic (EM) spectrum is heavily shared among several wireless systems. By introducing additional dedicated channels, independent from the EM ones, acoustic systems can be used to ensure the continuity of some critical services such as communication, localization, detection, and sensing. In this paper, we design and implement a novel acoustic system that uses only low-cost off-the-shelf hardware and the transmission of a single, suitably designed signal in the inaudible band (18–22 kHz) to perform integrated sensing (ranging) and communication. The experimental testbed consists of a common home speaker transmitting acoustic signals to a smartphone, which receives them through the integrated microphone, and of an additional receiver exploiting the same signals to estimate distance information from a physical obstacle in the environment. The performance of the proposed dual-function system in terms of noise, data rate, and accuracy in distance estimation is experimentally evaluated in a real operational environment.

Acoustic Dual-Function Communication and Echo-Location in Inaudible Band

Fascista A.;Coluccia A.
2022-01-01

Abstract

Acoustic communications are experiencing renewed interest as alternative solutions to traditional RF communications, not only in RF-denied environments (such as underwater) but also in areas where the electromagnetic (EM) spectrum is heavily shared among several wireless systems. By introducing additional dedicated channels, independent from the EM ones, acoustic systems can be used to ensure the continuity of some critical services such as communication, localization, detection, and sensing. In this paper, we design and implement a novel acoustic system that uses only low-cost off-the-shelf hardware and the transmission of a single, suitably designed signal in the inaudible band (18–22 kHz) to perform integrated sensing (ranging) and communication. The experimental testbed consists of a common home speaker transmitting acoustic signals to a smartphone, which receives them through the integrated microphone, and of an additional receiver exploiting the same signals to estimate distance information from a physical obstacle in the environment. The performance of the proposed dual-function system in terms of noise, data rate, and accuracy in distance estimation is experimentally evaluated in a real operational environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/467517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact