Considerable efforts are underway to rationally design and synthesize novel electrode materials for high-performance supercapacitors (SCs). However, the creation of suitable materials with high capacitance remains a big challenge for energy storage devices. Herein, unique three-dimensional (3D) ZnO hexagonal cubes on carbon cloth (ZnO@CC) were synthesized by invoking a facile and economical hydrothermal method. The mesoporous ZnO@CC electrode, by virtue of its high surface area, offers rich electroactive sites for the fast diffusion of electrolyte ions, resulting in the enhancement of the SC's performance. The ZnO@CC electrode demonstrated a high specific capacitance of 352.5 and 250 F g-1 at 2 and 20 A g-1, respectively. The ZnO@CC electrode revealed a decent stability of 84% over 5000 cycles at 20 A g-1 and an outstanding rate-capability of 71% at a 10-fold high current density with respect to 2 A g-1. Thus, the ZnO@CC electrode demonstrated improved electrochemical performance, signifying that ZnO as is promising candidate for SCs applications.

Binder-Free Porous 3D-ZnO Hexagonal-Cubes for Electrochemical Energy Storage Applications

Patrizia Bocchetta
Ultimo
2022-01-01

Abstract

Considerable efforts are underway to rationally design and synthesize novel electrode materials for high-performance supercapacitors (SCs). However, the creation of suitable materials with high capacitance remains a big challenge for energy storage devices. Herein, unique three-dimensional (3D) ZnO hexagonal cubes on carbon cloth (ZnO@CC) were synthesized by invoking a facile and economical hydrothermal method. The mesoporous ZnO@CC electrode, by virtue of its high surface area, offers rich electroactive sites for the fast diffusion of electrolyte ions, resulting in the enhancement of the SC's performance. The ZnO@CC electrode demonstrated a high specific capacitance of 352.5 and 250 F g-1 at 2 and 20 A g-1, respectively. The ZnO@CC electrode revealed a decent stability of 84% over 5000 cycles at 20 A g-1 and an outstanding rate-capability of 71% at a 10-fold high current density with respect to 2 A g-1. Thus, the ZnO@CC electrode demonstrated improved electrochemical performance, signifying that ZnO as is promising candidate for SCs applications.
File in questo prodotto:
File Dimensione Formato  
materials-15-02250-binder free ZnO.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/464875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact