In this paper, we begin to study the subalgebra lattice of a Leibniz algebra. In particular, we deal with Leibniz algebras whose subalgebra lattice is modular, upper semi-modular, lower semi-modular, distributive, or dually atomistic. The fact that a non-Lie Leibniz algebra has fewer one-dimensional subalgebras in general results in a number of lattice conditions being weaker than in the Lie case.
On the subalgebra lattice of a Leibniz algebra
Siciliano S.;
2022-01-01
Abstract
In this paper, we begin to study the subalgebra lattice of a Leibniz algebra. In particular, we deal with Leibniz algebras whose subalgebra lattice is modular, upper semi-modular, lower semi-modular, distributive, or dually atomistic. The fact that a non-Lie Leibniz algebra has fewer one-dimensional subalgebras in general results in a number of lattice conditions being weaker than in the Lie case.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.