Localization approach to N = 2 superconformal SU(N) × SU(N) quiver theory leads to a non-Gaussian two-matrix model representation for the expectation value of BPS circular SU(N) Wilson loop 〈 W〉. We study the subleading 1/N2 term in the large N expansion of 〈 W〉 at weak and strong coupling. We concentrate on the case of the symmetric quiver with equal gauge couplings which is equivalent to the ℤ2 orbifold of the SU(2N) N = 4 SYM theory. This orbifold gauge theory should be dual to type IIB superstring in AdS5 × (S5/ℤ2). We present a string theory argument suggesting that the 1/N2 term in 〈 W〉 in the orbifold theory should have the same strong-coupling asymptotics λ3/2 as in the N = 4 SYM case. We support this prediction on the gauge theory side by a numerical study of the localization matrix model. We also find a relation between the 1/N2 term in the Wilson loop expectation value and the derivative of the free energy of the orbifold gauge theory on 4-sphere.

1/N expansion of circular Wilson loop in N = 2 superconformal SU(N) × SU(N) quiver

Beccaria M.;
2021-01-01

Abstract

Localization approach to N = 2 superconformal SU(N) × SU(N) quiver theory leads to a non-Gaussian two-matrix model representation for the expectation value of BPS circular SU(N) Wilson loop 〈 W〉. We study the subleading 1/N2 term in the large N expansion of 〈 W〉 at weak and strong coupling. We concentrate on the case of the symmetric quiver with equal gauge couplings which is equivalent to the ℤ2 orbifold of the SU(2N) N = 4 SYM theory. This orbifold gauge theory should be dual to type IIB superstring in AdS5 × (S5/ℤ2). We present a string theory argument suggesting that the 1/N2 term in 〈 W〉 in the orbifold theory should have the same strong-coupling asymptotics λ3/2 as in the N = 4 SYM case. We support this prediction on the gauge theory side by a numerical study of the localization matrix model. We also find a relation between the 1/N2 term in the Wilson loop expectation value and the derivative of the free energy of the orbifold gauge theory on 4-sphere.
File in questo prodotto:
File Dimensione Formato  
JHEP04(2021)265.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 809.56 kB
Formato Adobe PDF
809.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/461922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 19
social impact