The increase in produced waste is a symptom of inefficient resources usage, which should be better exploited as a resource for energy and materials. The air pollution generated by waste causes impacts felt by a large part of the population living in and around the main urban areas. This paper presents a mobile sensor node for monitoring air and noise pollution; indeed, the developed system is installed on an RC drone, quickly monitoring large areas. It relies on a Raspberry Pi ZeroWboard and a wide set of sensors (i.e., NO2, CO, NH3, CO2, VOCs, PM2.5, and PM10) to sample the environmental parameter at regular time intervals. A proper classification algorithm was developed to quantify the traffic level from the noise level (NL) acquired by the onboard microphone. Additionally, the drone is equipped with a camera and implements a visual recognition algorithm (Fast R-CNN) to detect waste fires and mark them by a GPS receiver. Furthermore, the firmware for managing the sensing unit operation was developed, as well as the power supply section. In particular, the node’s consumption was analysed in two use cases, and the battery capacity needed to power the designed device was sized. The onfield tests demonstrated the proper operation of the developed monitoring system. Finally, a cloud application was developed to remotely monitor the information acquired by the sensor-based drone and upload them on a remote database.

A Sensor-based Drone for Pollutants Detection in Eco-Friendly Cities: Hardware Design and Application Development for Detected Data Analysis

Roberto De Fazio
Writing – Original Draft Preparation
;
Massimo De Vittorio;Paolo Visconti
Writing – Review & Editing
2022-01-01

Abstract

The increase in produced waste is a symptom of inefficient resources usage, which should be better exploited as a resource for energy and materials. The air pollution generated by waste causes impacts felt by a large part of the population living in and around the main urban areas. This paper presents a mobile sensor node for monitoring air and noise pollution; indeed, the developed system is installed on an RC drone, quickly monitoring large areas. It relies on a Raspberry Pi ZeroWboard and a wide set of sensors (i.e., NO2, CO, NH3, CO2, VOCs, PM2.5, and PM10) to sample the environmental parameter at regular time intervals. A proper classification algorithm was developed to quantify the traffic level from the noise level (NL) acquired by the onboard microphone. Additionally, the drone is equipped with a camera and implements a visual recognition algorithm (Fast R-CNN) to detect waste fires and mark them by a GPS receiver. Furthermore, the firmware for managing the sensing unit operation was developed, as well as the power supply section. In particular, the node’s consumption was analysed in two use cases, and the battery capacity needed to power the designed device was sized. The onfield tests demonstrated the proper operation of the developed monitoring system. Finally, a cloud application was developed to remotely monitor the information acquired by the sensor-based drone and upload them on a remote database.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/461697
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact