The paper deals with the equation - Δ u+ a(x) u= | u| p-1u, u∈ H1(RN) , with N≥ 2 , p>1,p 0 , lim |x|→∞a(x) = a∞. Assuming that the potential a(x) satisfies lim|x|→∞[a(x)-a∞]eη|x|=∞∀η>0, limρ→∞sup{a(ρθ1)-a(ρθ2):θ1,θ2∈RN,|θ1|=|θ2|=1}eη~ρ=0forsomeη~>0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that N= 2 , or that | a(x) - a∞| is uniformly small in RN, etc...

### Infinitely many positive solutions of nonlinear Schrödinger equations

#### Abstract

The paper deals with the equation - Δ u+ a(x) u= | u| p-1u, u∈ H1(RN) , with N≥ 2 , p>1,p 0 , lim |x|→∞a(x) = a∞. Assuming that the potential a(x) satisfies lim|x|→∞[a(x)-a∞]eη|x|=∞∀η>0, limρ→∞sup{a(ρθ1)-a(ρθ2):θ1,θ2∈RN,|θ1|=|θ2|=1}eη~ρ=0forsomeη~>0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that N= 2 , or that | a(x) - a∞| is uniformly small in RN, etc...
##### Scheda breve Scheda completa Scheda completa (DC)
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11587/460617`
##### Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

• ND
• 5
• 5