The quantum formula of the fluctuation dissipation theorem (FDT) was given by Callen and Welton in 1951 [1] for the case of conductors, and then expanded by Kubo in 1966 [2, 3]. The drawback of these quantum relations concerns with the appearance of a zero-point contribution, hω/2 with h the reduced Planck constant and ω the angular frequency of the considered photon, which implies a divergence of the fluctuation spectrum at increasing frequencies. This divergence is responsible for a vacuum-catastrophe, to keep the analogy with the well-known ultraviolet catastrophe of the classical black-body radiation spectrum. As a consequence, the quantum formulation of the FDT as given by CallenWelton and Kubo introduces a Field Grand Challenge associated with the existence or less of a vacuum-fluctuations catastrophe for the energy-density spectrum. Here we propose a solution to this challenge by taking into account of the Casimir energy that, in turns, is found to be responsible for a quantum correction of the Stefan-Boltzmann law

Beyond the Formulations of the Fluctuation Dissipation Theorem Given by Callen and Welton (1951) and Expanded by Kubo (1966)

Eleonora Alfinito
Membro del Collaboration Group
2020-01-01

Abstract

The quantum formula of the fluctuation dissipation theorem (FDT) was given by Callen and Welton in 1951 [1] for the case of conductors, and then expanded by Kubo in 1966 [2, 3]. The drawback of these quantum relations concerns with the appearance of a zero-point contribution, hω/2 with h the reduced Planck constant and ω the angular frequency of the considered photon, which implies a divergence of the fluctuation spectrum at increasing frequencies. This divergence is responsible for a vacuum-catastrophe, to keep the analogy with the well-known ultraviolet catastrophe of the classical black-body radiation spectrum. As a consequence, the quantum formulation of the FDT as given by CallenWelton and Kubo introduces a Field Grand Challenge associated with the existence or less of a vacuum-fluctuations catastrophe for the energy-density spectrum. Here we propose a solution to this challenge by taking into account of the Casimir energy that, in turns, is found to be responsible for a quantum correction of the Stefan-Boltzmann law
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/459375
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact