In this study, several experimental investigations on the effects of nanofluids on the con- vective heat transfer coefficient in laminar and turbulent conditions were analyzed. The aim of this work is to provide an overview of the thermal performance achieved with the use of nanofluids in various experimental systems. This review covers both forced and natural convection phenomena, with a focus on the different experimental setups used to carry out the experimental campaigns. When possible, a comparison was performed between different experimental campaigns to provide an analysis of the possible common points and differences. A significant increase in the convective heat transfer coefficient was found by using nanofluids instead of traditional heat transfer fluids, in general, even with big data dispersion from one case to another that depended on boundary condi- tions and the particular experimental setup. In particular, a general trend shows that once a critic value of the Reynolds number or nanoparticle concentrations is reached, the heat transfer perfor- mance of the nanofluid decreases or has no appreciable improvement. As a research field still under development, nanofluids are expected to achieve even higher performance and their use will be crucial in many industrial and civil sectors to increase energy efficiency and, thus, mitigate the en- vironmental impact.

A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup

Gianpiero Colangelo
;
Marco Milanese;Giuseppe Starace;Arturo de Risi
2021-01-01

Abstract

In this study, several experimental investigations on the effects of nanofluids on the con- vective heat transfer coefficient in laminar and turbulent conditions were analyzed. The aim of this work is to provide an overview of the thermal performance achieved with the use of nanofluids in various experimental systems. This review covers both forced and natural convection phenomena, with a focus on the different experimental setups used to carry out the experimental campaigns. When possible, a comparison was performed between different experimental campaigns to provide an analysis of the possible common points and differences. A significant increase in the convective heat transfer coefficient was found by using nanofluids instead of traditional heat transfer fluids, in general, even with big data dispersion from one case to another that depended on boundary condi- tions and the particular experimental setup. In particular, a general trend shows that once a critic value of the Reynolds number or nanoparticle concentrations is reached, the heat transfer perfor- mance of the nanofluid decreases or has no appreciable improvement. As a research field still under development, nanofluids are expected to achieve even higher performance and their use will be crucial in many industrial and civil sectors to increase energy efficiency and, thus, mitigate the en- vironmental impact.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/456639
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact