The aim of this paper is to introduce and to study the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ of the multipliers of the space $mathcal{S}_\omega(\mathbb{R}^N)$ of the $\omega$-ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$. Moreover, we define and compare some lc-topologies of which $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ can be naturally endowed.

Multipliers on $mathcal{S}_\omega(\mathbb{R}^N)$

Angela A. Albanese
Membro del Collaboration Group
;
C. Mele
Membro del Collaboration Group
2021-01-01

Abstract

The aim of this paper is to introduce and to study the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ of the multipliers of the space $mathcal{S}_\omega(\mathbb{R}^N)$ of the $\omega$-ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$. Moreover, we define and compare some lc-topologies of which $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ can be naturally endowed.
File in questo prodotto:
File Dimensione Formato  
Albanese-Mele2021_Article_MultipliersOnMathcalSOmegaMath.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 522.67 kB
Formato Adobe PDF
522.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/454113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact