The aim of this paper is to introduce and to study the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ of the multipliers of the space $mathcal{S}_\omega(\mathbb{R}^N)$ of the $\omega$-ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$. Moreover, we define and compare some lc-topologies of which $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ can be naturally endowed.
Multipliers on $mathcal{S}_\omega(\mathbb{R}^N)$
Angela A. Albanese
Membro del Collaboration Group
;C. MeleMembro del Collaboration Group
2021-01-01
Abstract
The aim of this paper is to introduce and to study the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ of the multipliers of the space $mathcal{S}_\omega(\mathbb{R}^N)$ of the $\omega$-ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space $mathcal{O}_{M,\omega}(\mathbb{R}^N)$. Moreover, we define and compare some lc-topologies of which $mathcal{O}_{M,\omega}(\mathbb{R}^N)$ can be naturally endowed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Albanese-Mele2021_Article_MultipliersOnMathcalSOmegaMath.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
522.67 kB
Formato
Adobe PDF
|
522.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.