A theoretical framework is presented for a (copula-based) notion of dissimilarity between continuous random vectors and its main properties are studied. The proposed dissimilarity assigns the smallest value to a pair of random vectors that are comonotonic. Various properties of this dissimilarity are studied, with special attention to those that are prone to the hierarchical agglomerative methods, such as reducibility. Some insights are provided for the use of such a measure in clustering algorithms and a simulation study is presented. Real case studies illustrate the main features of the whole methodology.

Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables

Durante F.
2021-01-01

Abstract

A theoretical framework is presented for a (copula-based) notion of dissimilarity between continuous random vectors and its main properties are studied. The proposed dissimilarity assigns the smallest value to a pair of random vectors that are comonotonic. Various properties of this dissimilarity are studied, with special attention to those that are prone to the hierarchical agglomerative methods, such as reducibility. Some insights are provided for the use of such a measure in clustering algorithms and a simulation study is presented. Real case studies illustrate the main features of the whole methodology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/453078
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 15
social impact