We construct a Baum--Connes assembly map localised at the unit element of a discrete group $Gamma$. This morphism, called $mu_ au$, is defined in $KK$-theory with coefficients in $mathbb{R}$ by means of the action of the projection $[ au ] in KK_{mathbb{R}}^Gamma(mathbb{C},mathbb{C})$ canonically associated to the group trace of $Gamma$. We show that the corresponding $ au$-Baum--Connes conjecture is weaker then the classical one but still implies the strong Novikov conjecture. The right hand side of $mu_ au$ is functorial with respect to the group $Gamma$.

The Baum--Connes conjecture localised at the unit element of a discrete group

Paolo Antonini;
2021-01-01

Abstract

We construct a Baum--Connes assembly map localised at the unit element of a discrete group $Gamma$. This morphism, called $mu_ au$, is defined in $KK$-theory with coefficients in $mathbb{R}$ by means of the action of the projection $[ au ] in KK_{mathbb{R}}^Gamma(mathbb{C},mathbb{C})$ canonically associated to the group trace of $Gamma$. We show that the corresponding $ au$-Baum--Connes conjecture is weaker then the classical one but still implies the strong Novikov conjecture. The right hand side of $mu_ au$ is functorial with respect to the group $Gamma$.
File in questo prodotto:
File Dimensione Formato  
Pubblicazione_4.pdf

non disponibili

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 573.57 kB
Formato Adobe PDF
573.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/447454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact