In this article, we introduce a new sequence (Formula presented.) to find a new estimation of the cardinality Nm of the minimal involutive square-free solution of level m. As an application, using the first values of (Formula presented.) we improve the estimations of Nm obtained by Gateva-Ivanova and Cameron and Lebed and Vendramin. Following the approach of the first part, in the last section we construct several new counterexamples to the Gateva-Ivanova’s Conjecture.

About a question of Gateva-Ivanova and Cameron on square-free set-theoretic solutions of the Yang-Baxter equation

Castelli M.;Catino F.;Pinto G.
2020-01-01

Abstract

In this article, we introduce a new sequence (Formula presented.) to find a new estimation of the cardinality Nm of the minimal involutive square-free solution of level m. As an application, using the first values of (Formula presented.) we improve the estimations of Nm obtained by Gateva-Ivanova and Cameron and Lebed and Vendramin. Following the approach of the first part, in the last section we construct several new counterexamples to the Gateva-Ivanova’s Conjecture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/446898
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact