We introduce a new definition of viscosity solution to path-dependent partial differential equations, which is a slight modification of the definition introduced in [I. Ekren et al., Ann. Probab., 42 (2014), pp. 204-236]. With the new definition, we prove the two important results, until now missing in the literature, namely, a general stability result and a comparison result for semicontinuous sub-/supersolutions. As an application, we prove the existence of viscosity solutions using the Perron method. Moreover, we connect viscosity solutions of path-dependent PDEs with viscosity solutions of partial differential equations on Hilbert spaces.

Viscosity solutions of path-dependent pdes with randomized time

Rosestolato M.
2020-01-01

Abstract

We introduce a new definition of viscosity solution to path-dependent partial differential equations, which is a slight modification of the definition introduced in [I. Ekren et al., Ann. Probab., 42 (2014), pp. 204-236]. With the new definition, we prove the two important results, until now missing in the literature, namely, a general stability result and a comparison result for semicontinuous sub-/supersolutions. As an application, we prove the existence of viscosity solutions using the Perron method. Moreover, we connect viscosity solutions of path-dependent PDEs with viscosity solutions of partial differential equations on Hilbert spaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/445289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact