In the present paper the Generalized Differential Quadrature Finite Element Method (GDQFEM) is applied to deal with the static analysis of plane state structures with generic through the thickness material discontinuities and holes of various shapes. The GDQFEM numerical technique is an extension of the Generalized Differential Quadrature (GDQ) method and is based on the idea of conventional integral quadrature. In particular, the GDQFEM results in terms of stresses and displacements for classical and advanced plane stress problems with discontinuities are compared to the ones by the Cell Method (CM) and Finite Element Method (FEM). The multi-domain technique is implemented in a MATLAB code for solving irregular domains with holes and defects. In order to demonstrate the accuracy of the proposed methodology, several numerical examples of stress and displacement distributions are graphically shown and discussed.

GDQFEM Numerical Simulations of Continuous Media with Cracks and Discontinuities

Viola, E.;Tornabene, F.
;
Ferretti, E.;Fantuzzi, N.
2013-01-01

Abstract

In the present paper the Generalized Differential Quadrature Finite Element Method (GDQFEM) is applied to deal with the static analysis of plane state structures with generic through the thickness material discontinuities and holes of various shapes. The GDQFEM numerical technique is an extension of the Generalized Differential Quadrature (GDQ) method and is based on the idea of conventional integral quadrature. In particular, the GDQFEM results in terms of stresses and displacements for classical and advanced plane stress problems with discontinuities are compared to the ones by the Cell Method (CM) and Finite Element Method (FEM). The multi-domain technique is implemented in a MATLAB code for solving irregular domains with holes and defects. In order to demonstrate the accuracy of the proposed methodology, several numerical examples of stress and displacement distributions are graphically shown and discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/443358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 50
social impact