The deformation behaviour of bimodal sized Al2O3/Al nanocomposites were investigated by hot compression tests conducted in the temperature range 350–500°C and strain rates of 0.001, 0.01 and 0.1 s–1. The dynamic recrystallisation behaviour of the nanocomposites strongly depended on the forming parameters. The bimodal sized Al2O3 particles played a crucial role in the recrystallised microstructure. The addition of bimodal sized Al2O3 particles led to a significant increase of activation energy of plastic deformation, corroborating the enhanced resistance of the nanocomposite to hot deformation. This was also reflected by the increased compressive yield strength in the nanocomposite due to both dislocation strengthening caused by n-Al2O3 and preventing the grain growth due to the presence of μ-Al2O3 at grain boundaries. It was found that with the decrease of Z values, local strain induced by deformation was released and the grain size of aluminium matrix gradually increased, indicating that the main softening mechanism of the bimodal sized Al2O3/Al nanocomposites was dynamic recrystallisation (DRX). The lower the Z value was, the easier the DRX occurred. The highly beneficial role of the bimodal sized Al2O3 reinforcement in improving the high-temperature performance of aluminium matrix nanocomposite was discussed.

Hot deformation behaviour of bimodal sized Al2O3/Al nanocomposites fabricated by spark plasma sintering

Sadeghi B.;Cavaliere P.;
2020-01-01

Abstract

The deformation behaviour of bimodal sized Al2O3/Al nanocomposites were investigated by hot compression tests conducted in the temperature range 350–500°C and strain rates of 0.001, 0.01 and 0.1 s–1. The dynamic recrystallisation behaviour of the nanocomposites strongly depended on the forming parameters. The bimodal sized Al2O3 particles played a crucial role in the recrystallised microstructure. The addition of bimodal sized Al2O3 particles led to a significant increase of activation energy of plastic deformation, corroborating the enhanced resistance of the nanocomposite to hot deformation. This was also reflected by the increased compressive yield strength in the nanocomposite due to both dislocation strengthening caused by n-Al2O3 and preventing the grain growth due to the presence of μ-Al2O3 at grain boundaries. It was found that with the decrease of Z values, local strain induced by deformation was released and the grain size of aluminium matrix gradually increased, indicating that the main softening mechanism of the bimodal sized Al2O3/Al nanocomposites was dynamic recrystallisation (DRX). The lower the Z value was, the easier the DRX occurred. The highly beneficial role of the bimodal sized Al2O3 reinforcement in improving the high-temperature performance of aluminium matrix nanocomposite was discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/442014
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact