Nowadays, an increasing interest in combinatorial drug delivery systems is emerging, highlighting the possibility of exploiting essential oils (EO) for topical applications. This work aimed at developing nanostructured lipid carriers (NLC) for the combined delivery of ferulic acid and Lavandula EO, whose beneficial effects in wound-healing processes have been widely reported. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<150 nm) and a high encapsulation efficiency (>85%) were obtained. The co-presence of ferulic acid and Lavandula EO, as compared to synthetic isopropyl myristate-based NLC, increased nanoparticles’ stability, due to higher ordering chains, as confirmed by morphological and physicochemical studies. An enhanced cytocompatibility was observed when combining ferulic acid and Lavandula EO, as confirmed by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic acid and Lavandula EO significantly promoted cell migration with higher effectiveness in respect to the free drug solution and the carrier without the EO. Taken all together, our results suggest a potential combined effect of the antioxidant ferulic acid and Lavandula EO co-delivered in lipid nanoparticles in promoting cell proliferation and migration, representing a promising strategy in the treatment of wounds.

Ferulic acid-nlc with lavandula essential oil: A possible strategy for wound-healing?

Manno D. E.
Membro del Collaboration Group
;
Serra A.
Membro del Collaboration Group
;
2020-01-01

Abstract

Nowadays, an increasing interest in combinatorial drug delivery systems is emerging, highlighting the possibility of exploiting essential oils (EO) for topical applications. This work aimed at developing nanostructured lipid carriers (NLC) for the combined delivery of ferulic acid and Lavandula EO, whose beneficial effects in wound-healing processes have been widely reported. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<150 nm) and a high encapsulation efficiency (>85%) were obtained. The co-presence of ferulic acid and Lavandula EO, as compared to synthetic isopropyl myristate-based NLC, increased nanoparticles’ stability, due to higher ordering chains, as confirmed by morphological and physicochemical studies. An enhanced cytocompatibility was observed when combining ferulic acid and Lavandula EO, as confirmed by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic acid and Lavandula EO significantly promoted cell migration with higher effectiveness in respect to the free drug solution and the carrier without the EO. Taken all together, our results suggest a potential combined effect of the antioxidant ferulic acid and Lavandula EO co-delivered in lipid nanoparticles in promoting cell proliferation and migration, representing a promising strategy in the treatment of wounds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/441999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact