Sepsis outcome is determined by a balance between inflammation and immune suppression. We aimed to evaluate monocytes polarization and reprogramming during these processes. We analyzed 93 patients with procalcitonin level >0.5 ng/mL (hPCT) and suspected/confirmed sepsis, and 84 controls by analysis of CD14, CD16 and HLA-DR expression on blood monocytes using fluorescent labeled monoclonal antibodies and BD FACS CANTO II. Complete blood cell count, procalcitonin and other biochemical markers were evaluated. Intermediate monocytes CD14++CD16+ increased in hPCT patients (including both positive and negative culture) compared to controls (13.6% ± 0.8 vs 6.2% ± 0.3, p<0.001), while classical monocytes CD14++CD16- were significantly reduced (72.5% ± 1.6 vs 82.6% ± 0.7, p<0.001). Among hPCT patients having positive microbial culture, the percentage of intermediate monocytes was significantly higher in septic compared with non-septic/localized-infection patients (17.4% vs 11.5%; p<0.05) whilst the percentage of classical monocytes was lower (68.0% vs 74.5%). Three-four days following the diagnosis of sepsis, HLA-DR expression on monocyte (mHLA-DR) was lower (94.3%) compared to controls (99.4%) (p<0.05). Septic patients with the worst clinical conditions showed higher incidence of secondary infections, longtime hospitalization and lower HLA-DR+monocytes compared to septic patients with better clinical outcome (88.4% vs 98.6%, p=0.05). The dynamic nature of sepsis correlates with monocytes functional polarization and reprogramming from a pro-inflammatory CD14++CD16+ phenotype in non-septic hPCT patients to a decrease of HLA-DR surface expression in hPCT patients with confirmed sepsis, making HLA-DR reduction a marker of immune-paralysis and sepsis outcome. Analysis of monocytes plasticity opens to new mechanisms responsible for pro/anti-inflammatory responses during sepsis, and new im - muno therapies.

Flow cytometric analysis of monocytes polarization and reprogramming from inflammatory to immunosuppressive phase during sepsis

Mazzei A.;Verri T.;Lobreglio G.
2019-01-01

Abstract

Sepsis outcome is determined by a balance between inflammation and immune suppression. We aimed to evaluate monocytes polarization and reprogramming during these processes. We analyzed 93 patients with procalcitonin level >0.5 ng/mL (hPCT) and suspected/confirmed sepsis, and 84 controls by analysis of CD14, CD16 and HLA-DR expression on blood monocytes using fluorescent labeled monoclonal antibodies and BD FACS CANTO II. Complete blood cell count, procalcitonin and other biochemical markers were evaluated. Intermediate monocytes CD14++CD16+ increased in hPCT patients (including both positive and negative culture) compared to controls (13.6% ± 0.8 vs 6.2% ± 0.3, p<0.001), while classical monocytes CD14++CD16- were significantly reduced (72.5% ± 1.6 vs 82.6% ± 0.7, p<0.001). Among hPCT patients having positive microbial culture, the percentage of intermediate monocytes was significantly higher in septic compared with non-septic/localized-infection patients (17.4% vs 11.5%; p<0.05) whilst the percentage of classical monocytes was lower (68.0% vs 74.5%). Three-four days following the diagnosis of sepsis, HLA-DR expression on monocyte (mHLA-DR) was lower (94.3%) compared to controls (99.4%) (p<0.05). Septic patients with the worst clinical conditions showed higher incidence of secondary infections, longtime hospitalization and lower HLA-DR+monocytes compared to septic patients with better clinical outcome (88.4% vs 98.6%, p=0.05). The dynamic nature of sepsis correlates with monocytes functional polarization and reprogramming from a pro-inflammatory CD14++CD16+ phenotype in non-septic hPCT patients to a decrease of HLA-DR surface expression in hPCT patients with confirmed sepsis, making HLA-DR reduction a marker of immune-paralysis and sepsis outcome. Analysis of monocytes plasticity opens to new mechanisms responsible for pro/anti-inflammatory responses during sepsis, and new im - muno therapies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/441188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact