This work represents an innovative study that, for the first time, explores the possibility to use waste flours to produce thermoplastic polymeric bio-films. To the best of our knowledge, this is the first time that waste flours, derived from bakeries, pizzerias or pasta factories, have been proposed for the production of bio-polymers, as a replacement of neat starch. To this aim, durum waste flour derived from a pasta factory, soft waste flour derived from pizzerias and neat maize starch used as control material were firstly analyzed from dimensional, morphological and chemical points of view. Afterwards, waste flour films were produced by the addition of a nature-based plasticizer, glycerol. Mechanical characterization of the plasticized thermoplastic films, produced by compression molding, evidenced low performances, even in the case of the neat maize starch. In order to improve the mechanical properties, the possibility to include polylactic acid and cardanol based plasticizer was also investigated. Mass transport properties of all the produced bio-films were investigated by measuring their water vapor permeability and hygroscopic absorption. The durability properties of the bio-films were assessed by accelerated ageing tests, while the biodegradability of the waste-based films was evaluated by measuring the solubility and the degradation in water. The physicochemical analyses of the novel bio-films evidenced good mechanical properties; specifically, the waste-based films showed a lower hygroscopic absorption and water solubility than those of the blends containing neat starch.

An Innovative Method for the Recycling of Waste Carbohydrate Based Flours

Carola Esposito Corcione
;
Raffaella Striani;Francesca Ferrari;Paolo Visconti
Supervision
;
Daniela Rizzo;Antonio Greco
2020-01-01

Abstract

This work represents an innovative study that, for the first time, explores the possibility to use waste flours to produce thermoplastic polymeric bio-films. To the best of our knowledge, this is the first time that waste flours, derived from bakeries, pizzerias or pasta factories, have been proposed for the production of bio-polymers, as a replacement of neat starch. To this aim, durum waste flour derived from a pasta factory, soft waste flour derived from pizzerias and neat maize starch used as control material were firstly analyzed from dimensional, morphological and chemical points of view. Afterwards, waste flour films were produced by the addition of a nature-based plasticizer, glycerol. Mechanical characterization of the plasticized thermoplastic films, produced by compression molding, evidenced low performances, even in the case of the neat maize starch. In order to improve the mechanical properties, the possibility to include polylactic acid and cardanol based plasticizer was also investigated. Mass transport properties of all the produced bio-films were investigated by measuring their water vapor permeability and hygroscopic absorption. The durability properties of the bio-films were assessed by accelerated ageing tests, while the biodegradability of the waste-based films was evaluated by measuring the solubility and the degradation in water. The physicochemical analyses of the novel bio-films evidenced good mechanical properties; specifically, the waste-based films showed a lower hygroscopic absorption and water solubility than those of the blends containing neat starch.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/439472
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact