We propose a coupled thermoelastic approach based on the Lord-Shulman (L-S) and Maxwell's formulations to study the wave propagation in functionally graded (FG) cylindrical panels with piezoelectric layers under a thermal shock loading. The material properties of the FG core layer feature a graded distribution throughout the thickness and vary according to a simple power law. A layerwise differential quadrature method (LW-DQM) is combined with a non-uniform rational B-spline (NURBS) multi-step time integration scheme to discretize the governing equations both in the spatial and time domains. The compatibility conditions of the physical quantities are enforced at the interfaces to describe their structural behavior in a closed form. A validation and comparative analysis with the available literature, together with a convergence study, show the efficiency and stability of the proposed method to handle thermoelastic problems. Numerical applications are herein performed systematically to check for the sensitivity of the thermoelastic response to the material graded index, piezoelectric layer thickness, external electrical voltage, opening angle, and shock thermal loading, which would be very helpful for practical engineering applications.
Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers
Dimitri R.;Tornabene F.
2020-01-01
Abstract
We propose a coupled thermoelastic approach based on the Lord-Shulman (L-S) and Maxwell's formulations to study the wave propagation in functionally graded (FG) cylindrical panels with piezoelectric layers under a thermal shock loading. The material properties of the FG core layer feature a graded distribution throughout the thickness and vary according to a simple power law. A layerwise differential quadrature method (LW-DQM) is combined with a non-uniform rational B-spline (NURBS) multi-step time integration scheme to discretize the governing equations both in the spatial and time domains. The compatibility conditions of the physical quantities are enforced at the interfaces to describe their structural behavior in a closed form. A validation and comparative analysis with the available literature, together with a convergence study, show the efficiency and stability of the proposed method to handle thermoelastic problems. Numerical applications are herein performed systematically to check for the sensitivity of the thermoelastic response to the material graded index, piezoelectric layer thickness, external electrical voltage, opening angle, and shock thermal loading, which would be very helpful for practical engineering applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.