In this paper, we give a characterization of the quasi-linear left cycle sets A with Rad(A) Soc(A) via unitary metahomomorphisms and a complete description of those with Rad(A) Fix(A) = Soc(A) improving the results obtained in [F. Catino and M. M. Miccoli, Construction of quasi-linear left cycle sets, J. Algebra Appl. 14(1) (2015), Article ID:1550001, 1-7]. Moreover, we develop a theory of dynamical extensions of quasi-linear left cycle sets to provide new set-theoretic solutions of the Yang-Baxter equation that are non-degenerate, involutive and multipermutational.

Dynamical extensions of quasi-linear left cycle sets and the Yang-Baxter equation

Castelli M.;Catino F.;Miccoli M. M.;Pinto G.
2019-01-01

Abstract

In this paper, we give a characterization of the quasi-linear left cycle sets A with Rad(A) Soc(A) via unitary metahomomorphisms and a complete description of those with Rad(A) Fix(A) = Soc(A) improving the results obtained in [F. Catino and M. M. Miccoli, Construction of quasi-linear left cycle sets, J. Algebra Appl. 14(1) (2015), Article ID:1550001, 1-7]. Moreover, we develop a theory of dynamical extensions of quasi-linear left cycle sets to provide new set-theoretic solutions of the Yang-Baxter equation that are non-degenerate, involutive and multipermutational.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/435228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact