We consider the Liouville theory in fixed Euclidean AdS2 background. Expanded near the minimum of the potential the elementary field has mass squared 2 and (assuming the standard Dirichlet b.c.) corresponds to a dimension 2 operator at the boundary. We provide strong evidence for the conjecture that the boundary correlators of the Liouville field are the same as the correlators of the holomorphic stress tensor (or the Virasoro generator with the same central charge) on a half-plane or a disc restricted to the boundary. This relation was first observed at the leading semiclassical order (tree-level Witten diagrams in AdS2) in [19] and here we demonstrate its validity also at the one-loop level. We also discuss arguments that may lead to its general proof.

On boundary correlators in Liouville theory on AdS2

Beccaria M.
;
2019

Abstract

We consider the Liouville theory in fixed Euclidean AdS2 background. Expanded near the minimum of the potential the elementary field has mass squared 2 and (assuming the standard Dirichlet b.c.) corresponds to a dimension 2 operator at the boundary. We provide strong evidence for the conjecture that the boundary correlators of the Liouville field are the same as the correlators of the holomorphic stress tensor (or the Virasoro generator with the same central charge) on a half-plane or a disc restricted to the boundary. This relation was first observed at the leading semiclassical order (tree-level Witten diagrams in AdS2) in [19] and here we demonstrate its validity also at the one-loop level. We also discuss arguments that may lead to its general proof.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/435072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact