In this article, we report the measurement of underwater aerophobicity, through the captive-bubble method, for different polymeric coatings employed to protect microscale and nanoscale flexible electronic devices for seawater applications. Controlling the morphology and wettability of the coating, in particular with the incorporation of nanoparticles of fluorinated polymers, allows to adjust the hydrophilic/hydrophobic (aerophobic/aerophilic) character of the surface in order to achieve a more insulating and antibiofouling behavior. Morphological analysis (roughness) and wettability measurements in sessile-drop and captive-bubble methods were provided for some properly selected polymeric coatings. We found that parylene C decorated with poly(vinylidene fluoride) nanoparticles at a higher dispersion concentration (5 mg/mL) exhibits the best compromise between morphology, hydrophobicity, and underwater aerophobicity, with sessile-drop water contact angle of 95.1 ± 2.9° and captive-air-bubble contact angle of 133.1 ± 5.9°. © The Author(s) 2019.

Captive-air-bubble aerophobicity measurements of antibiofouling coatings for underwater MEMS devices

M. Mariello;M. Salbini;V. Brunetti;A. Qualtieri;M. De Vittorio
2019-01-01

Abstract

In this article, we report the measurement of underwater aerophobicity, through the captive-bubble method, for different polymeric coatings employed to protect microscale and nanoscale flexible electronic devices for seawater applications. Controlling the morphology and wettability of the coating, in particular with the incorporation of nanoparticles of fluorinated polymers, allows to adjust the hydrophilic/hydrophobic (aerophobic/aerophilic) character of the surface in order to achieve a more insulating and antibiofouling behavior. Morphological analysis (roughness) and wettability measurements in sessile-drop and captive-bubble methods were provided for some properly selected polymeric coatings. We found that parylene C decorated with poly(vinylidene fluoride) nanoparticles at a higher dispersion concentration (5 mg/mL) exhibits the best compromise between morphology, hydrophobicity, and underwater aerophobicity, with sessile-drop water contact angle of 95.1 ± 2.9° and captive-air-bubble contact angle of 133.1 ± 5.9°. © The Author(s) 2019.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/434951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact