We consider a firm producing a single consumption good that makes irreversible investments to expand its production capacity. The firm aims to maximize its expected total discounted real profit net of investment on a finite horizon T. The capacity is modeled as a controlled lto process where the control is the real investment, which is not necessarily a rate, but more generally a monotone process. The result is a singular stochastic control problem. We introduce the associated optimal stopping problem, that is "the optimal cost of not investing." Its variational formulation turns out to be a parabolic obstacle problem, which we explicitly solve in the case of Constant Rela tive Risk Aversion CRRA production functions. The moving free boundary is the threshold at which the shadow value of installed capital exceeds the capital's replacement cost. Then we use the equation of the free boundary to evaluate the optimal investment policy and its corresponding optimal profits.

Explicit Solution of a Stochastic, Irreversible Investment Problem and Its Moving Threshold

Maria B. Chiarolla;
2005

Abstract

We consider a firm producing a single consumption good that makes irreversible investments to expand its production capacity. The firm aims to maximize its expected total discounted real profit net of investment on a finite horizon T. The capacity is modeled as a controlled lto process where the control is the real investment, which is not necessarily a rate, but more generally a monotone process. The result is a singular stochastic control problem. We introduce the associated optimal stopping problem, that is "the optimal cost of not investing." Its variational formulation turns out to be a parabolic obstacle problem, which we explicitly solve in the case of Constant Rela tive Risk Aversion CRRA production functions. The moving free boundary is the threshold at which the shadow value of installed capital exceeds the capital's replacement cost. Then we use the equation of the free boundary to evaluate the optimal investment policy and its corresponding optimal profits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/431346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
social impact