The spectrum of the Cesàro operator C, which is always continuous (but never compact) when acting on the classical Korenblum space and other related weighted Fréchet spaces or (LB)-spaces of analytic functions on the open unit disc, is completely determined. It turns out that such spaces are always Schwartz but, with the exception of the Korenblum space, nevr nuclear. Some consequences concerning the mean ergodicity of C are deduced.
Titolo: | The Cesàro operator on Korenblum type spaces of analytic functions |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Abstract: | The spectrum of the Cesàro operator C, which is always continuous (but never compact) when acting on the classical Korenblum space and other related weighted Fréchet spaces or (LB)-spaces of analytic functions on the open unit disc, is completely determined. It turns out that such spaces are always Schwartz but, with the exception of the Korenblum space, nevr nuclear. Some consequences concerning the mean ergodicity of C are deduced. |
Handle: | http://hdl.handle.net/11587/421799 |
Appare nelle tipologie: | Articolo pubblicato su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.