The mechanical and electrochemical behavior of ultrasonic spot welded hybrid joints, made of AA5754 aluminum and carbon fiber reinforced epoxy with a co-cured thermoplastic surface layer, was studied. The effect of the welding parameters (energy and force) and the thickness of a thermoplastic film, applied as an upper ply in the composite lay-up, on the development of adhesion strength, was investigated. The best mechanical results were obtained when the welding parameters were able to achieve a large bonding area of mechanical interlocking between naked carbon fibers and aluminum and a better load distribution. The electrochemical results excluded the possibility of galvanic corrosion between aluminum and composite adherends thanks to the insulating action provided by the thermoplastic film
Titolo: | Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Abstract: | The mechanical and electrochemical behavior of ultrasonic spot welded hybrid joints, made of AA5754 aluminum and carbon fiber reinforced epoxy with a co-cured thermoplastic surface layer, was studied. The effect of the welding parameters (energy and force) and the thickness of a thermoplastic film, applied as an upper ply in the composite lay-up, on the development of adhesion strength, was investigated. The best mechanical results were obtained when the welding parameters were able to achieve a large bonding area of mechanical interlocking between naked carbon fibers and aluminum and a better load distribution. The electrochemical results excluded the possibility of galvanic corrosion between aluminum and composite adherends thanks to the insulating action provided by the thermoplastic film |
Handle: | http://hdl.handle.net/11587/419767 |
Appare nelle tipologie: | Articolo pubblicato su Rivista |