The paper proposes a simulation approach to evaluate the power required by a rotorcraft in standard flight missions and in emergency landing maneuvers, and the corresponding fuel consumption, in order to compare the feasibility and potential fuel savings for different hybrid power systems. More in detail, three options are analyzed, namely electrification of the tail rotor, fully hybrid electric propulsion and electric emergency landing. Weight penalty and potential fuel saving for the proposed hybridization schemes are evaluated for an Agusta-Westland A109 twin engine helicopter model. Nonetheless the discussed methods of analysis have general validity for single main rotor helicopter configurations. Two different scenarios are considered in this investigation: current technologies for batteries and motors and improved electrical components, with performance projections as of 2040. According to this analysis, electrification of the tail rotor and parallel hybridization are feasible with available technology, whereas a fully electrical power system for emergency landing could be developed only in the future. Finally, a parallel hybrid electric power system is sized according to the analysis of power request over four different missions. Fuel savings are evaluated for different energy management strategies. According to the results of this investigation, the parallel hybrid electric power system with present-day and future technologies can save fuel up to 5% and 12%, respectively, with an appropriate energy management strategy.

Fuel consumption of rotorcrafts and potentiality for hybrid electric power systems

T. Donateo
Methodology
;
G. Avanzini
Conceptualization
2018

Abstract

The paper proposes a simulation approach to evaluate the power required by a rotorcraft in standard flight missions and in emergency landing maneuvers, and the corresponding fuel consumption, in order to compare the feasibility and potential fuel savings for different hybrid power systems. More in detail, three options are analyzed, namely electrification of the tail rotor, fully hybrid electric propulsion and electric emergency landing. Weight penalty and potential fuel saving for the proposed hybridization schemes are evaluated for an Agusta-Westland A109 twin engine helicopter model. Nonetheless the discussed methods of analysis have general validity for single main rotor helicopter configurations. Two different scenarios are considered in this investigation: current technologies for batteries and motors and improved electrical components, with performance projections as of 2040. According to this analysis, electrification of the tail rotor and parallel hybridization are feasible with available technology, whereas a fully electrical power system for emergency landing could be developed only in the future. Finally, a parallel hybrid electric power system is sized according to the analysis of power request over four different missions. Fuel savings are evaluated for different energy management strategies. According to the results of this investigation, the parallel hybrid electric power system with present-day and future technologies can save fuel up to 5% and 12%, respectively, with an appropriate energy management strategy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/419477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact