Spiramycin is a macrolide antibiotic and antiparasitic that is used to treat toxoplasmosis and various other infections of soft tissues. In the current study, we evaluated the effects of α-cyclodextrin, β-cyclodextrin, or methyl-β-cyclodextrin supplementation to a synthetic culture medium on biomass and spiramycin production by Streptomyces ambofaciens ATCC 23877. We found a high stimulatory effect on spiramycin production when the culture medium was supplemented with 0.5% (w/v) methyl-βcyclodextrin, whereas α-cyclodextrin or β-cyclodextrin weakly enhanced antibiotic yields. As the stimulation of antibiotic production could be because of spiramycin complexation with cyclodextrins with effects on antibiotic stability and/or efflux, we analyzed the possible formation of complexes by physical−chemical methods. The results of Job plot experiment highlighted the formation of a nonhost@guest complex methyl-β-cyclodextrin@ spiramycin I in the stoichiometric ratio of 3:1 while they excluded the formation of complex between spiramycin I and α- orβ-cyclodextrin. Fourier-transform infrared spectroscopy measurements were then carried out to characterize the methyl-β-cyclodextrin@spiramycin I complex and individuate the chemical groups involved in the binding mechanism. These findings may help to improve the spiramycin fermentation process, providing at the same time a new device for better delivery of the antibiotic at the site of infection by methyl-β-cyclodextrin complexation, as it has been well-documented for other bioactive molecules.

Stimulatory effects of methyl-β-cyclodextrin on spiramycin production, and physical chemical characterization of nonhost@guest complexes

CALCAGNILE, Matteo;Simona Bettini
Investigation
;
Fabrizio Damiano;Adelfia Talà;Salvatore M. Tredici;Rosanna Pagano
Investigation
;
Marco Di Salvo;Luisa Siculella;Daniela Fico;Giuseppe E. De Benedetto;Ludovico Valli
Investigation
;
Pietro Alifano
2018-01-01

Abstract

Spiramycin is a macrolide antibiotic and antiparasitic that is used to treat toxoplasmosis and various other infections of soft tissues. In the current study, we evaluated the effects of α-cyclodextrin, β-cyclodextrin, or methyl-β-cyclodextrin supplementation to a synthetic culture medium on biomass and spiramycin production by Streptomyces ambofaciens ATCC 23877. We found a high stimulatory effect on spiramycin production when the culture medium was supplemented with 0.5% (w/v) methyl-βcyclodextrin, whereas α-cyclodextrin or β-cyclodextrin weakly enhanced antibiotic yields. As the stimulation of antibiotic production could be because of spiramycin complexation with cyclodextrins with effects on antibiotic stability and/or efflux, we analyzed the possible formation of complexes by physical−chemical methods. The results of Job plot experiment highlighted the formation of a nonhost@guest complex methyl-β-cyclodextrin@ spiramycin I in the stoichiometric ratio of 3:1 while they excluded the formation of complex between spiramycin I and α- orβ-cyclodextrin. Fourier-transform infrared spectroscopy measurements were then carried out to characterize the methyl-β-cyclodextrin@spiramycin I complex and individuate the chemical groups involved in the binding mechanism. These findings may help to improve the spiramycin fermentation process, providing at the same time a new device for better delivery of the antibiotic at the site of infection by methyl-β-cyclodextrin complexation, as it has been well-documented for other bioactive molecules.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/419055
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact