We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections with fractional Sobolev spaces, the space BV of functions of bounded variation, whose derivatives are not functions but measures and the space SBV, say the space of bounded variation functions whose derivative has no Cantor part. We prove that SBV is included in W^{s,1} for every s ∈ (0, 1) while the result remains open for BV. We study examples and address open questions.

Fractional sobolev spaces and functions of bounded variation of one variable

Leaci, Antonio;TOMARELLI, Franco
2017

Abstract

We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections with fractional Sobolev spaces, the space BV of functions of bounded variation, whose derivatives are not functions but measures and the space SBV, say the space of bounded variation functions whose derivative has no Cantor part. We prove that SBV is included in W^{s,1} for every s ∈ (0, 1) while the result remains open for BV. We study examples and address open questions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/416851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact