Combining an old idea of Olver and Rosenau with the classifica- tion of second and third order homogeneous Hamiltonian operators we classify compatible trios of two-component homogeneous Hamiltonian operators. The trios yield pairs of compatible bi-Hamiltonian opera- tors whose structure is a direct generalization of the bi-Hamiltonian pair of the KdV equation. The bi-Hamiltonian pairs give rise to multi- parametric families of bi-Hamiltonian systems. We recover known ex- amples and we find apparently new integrable systems whose central invariants are non-zero; this shows that new examples are not Miura- trivial.

Bi-Hamiltonian structures of KdV type

Raffaele Vitolo
2018-01-01

Abstract

Combining an old idea of Olver and Rosenau with the classifica- tion of second and third order homogeneous Hamiltonian operators we classify compatible trios of two-component homogeneous Hamiltonian operators. The trios yield pairs of compatible bi-Hamiltonian opera- tors whose structure is a direct generalization of the bi-Hamiltonian pair of the KdV equation. The bi-Hamiltonian pairs give rise to multi- parametric families of bi-Hamiltonian systems. We recover known ex- amples and we find apparently new integrable systems whose central invariants are non-zero; this shows that new examples are not Miura- trivial.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/416408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact