We investigated the cascading effects of chemical contaminants on alder leaf detritus quality and the exploitation of this feeding resource by benthic macroinvertebrates (isopods, gastropods, and mayfly nymphs). Trophic behavior and energetics of benthic macroinvertebrates were used to evaluate the effects of contaminants on detritus exploitation. A two-way factorial nested experimental design was used to statistically quantify how leaf detritus origin (polluted and unpolluted streams) and the pollution level of the site selected for microbial conditioning of the detritus could affect the feeding resource quality for aquatic benthic macroinvertebrates, as measured by their trophic behavior (i.e. food selection) and exploitation (i.e. food ingestion). Alder leaves collected from a polluted stream in a former mining area (South-Sardinia, Italy) had Cd, Pb, and Zn concentrations up to 10 times that of leaves collected from an unpolluted stream. When benthic macroinvertebrates were given the option to choose, they all selected leaves from the unpolluted stream and/or those conditioned in the unpolluted stream. Ingestion rates were also significantly affected by both considered factors: leaf origin and conditioning. In addition, synergistic effects strongly increased the chemical contaminant stress on the leaf detritus quality. These results show that the terrestrial component of land–water ecotones affected by mining can be a relevant indirect pathway of chemical stress to benthic macroinvertebrate species.
Do mining activities significantly affect feeding behavior of freshwater benthic macroinvertebrates? A case study in South Sardinia (Italy)
Alberto BassetMembro del Collaboration Group
;Maurizio PinnaMembro del Collaboration Group
;Monia RenziMembro del Collaboration Group
2017-01-01
Abstract
We investigated the cascading effects of chemical contaminants on alder leaf detritus quality and the exploitation of this feeding resource by benthic macroinvertebrates (isopods, gastropods, and mayfly nymphs). Trophic behavior and energetics of benthic macroinvertebrates were used to evaluate the effects of contaminants on detritus exploitation. A two-way factorial nested experimental design was used to statistically quantify how leaf detritus origin (polluted and unpolluted streams) and the pollution level of the site selected for microbial conditioning of the detritus could affect the feeding resource quality for aquatic benthic macroinvertebrates, as measured by their trophic behavior (i.e. food selection) and exploitation (i.e. food ingestion). Alder leaves collected from a polluted stream in a former mining area (South-Sardinia, Italy) had Cd, Pb, and Zn concentrations up to 10 times that of leaves collected from an unpolluted stream. When benthic macroinvertebrates were given the option to choose, they all selected leaves from the unpolluted stream and/or those conditioned in the unpolluted stream. Ingestion rates were also significantly affected by both considered factors: leaf origin and conditioning. In addition, synergistic effects strongly increased the chemical contaminant stress on the leaf detritus quality. These results show that the terrestrial component of land–water ecotones affected by mining can be a relevant indirect pathway of chemical stress to benthic macroinvertebrate species.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.