This study analyses the effects of trees on local meteorology of a Mediterranean City (Lecce, IT) using field measurements and computational fluid dynamics simulations. Measurements were collected for 51 days in a street canyon with trees to cover different meteorological and foliage conditions. Building façades and ground temperatures were estimated from infrared images, flow and turbulence measured by ultrasonic anemometers. In the case of approaching wind parallel to the street axis, trees induce large wind direction fluctuations below tree crowns and velocities up to about 80% lower than those at roof top. This, combined with the obstruction by tree crown, lead to lower ventilation in the bottom part of the street, especially during nocturnal hours, and to in-canyon volume-averaged pollutant concentration about 20% larger than in the tree-free case. Ignoring trapping effects of trees, as typically done in many air quality models, may lead to underestimation of ground level concentrations.

The effects of trees on micrometeorology in a real street canyon: Consequences for local air quality

BUCCOLIERI, RICCARDO
Secondo
;
2015

Abstract

This study analyses the effects of trees on local meteorology of a Mediterranean City (Lecce, IT) using field measurements and computational fluid dynamics simulations. Measurements were collected for 51 days in a street canyon with trees to cover different meteorological and foliage conditions. Building façades and ground temperatures were estimated from infrared images, flow and turbulence measured by ultrasonic anemometers. In the case of approaching wind parallel to the street axis, trees induce large wind direction fluctuations below tree crowns and velocities up to about 80% lower than those at roof top. This, combined with the obstruction by tree crown, lead to lower ventilation in the bottom part of the street, especially during nocturnal hours, and to in-canyon volume-averaged pollutant concentration about 20% larger than in the tree-free case. Ignoring trapping effects of trees, as typically done in many air quality models, may lead to underestimation of ground level concentrations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/409675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact