In this study we report the synthesis and characterisation of cellulose ferulate, lipoate and alpha-tocopherulate, and their ability to inhibit lipid peroxidation in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals: tert-butyl hydroperoxide and 2,2'-azobis-(2-amidinopropane). We also compared the antioxidant efficiency of the ferulate derivatives obtained through two different synthetic runs, and of a tocopherulate derivative prepared from 6-carboxycellulose. This study showed that the designed systems, preserving the antioxidant activity of the free substrates, are more effective in protecting from tert-butyl hydroperoxide than from 2,2'-azobis-(2-amidinopropane). Moreover, the cellulose ferulate with the higher degree of substitution acted as the best antioxidant.
Titolo: | Design and synthesis of cellulose derivatives with antioxidant activity |
Autori: | |
Data di pubblicazione: | 2008 |
Rivista: | |
Abstract: | In this study we report the synthesis and characterisation of cellulose ferulate, lipoate and alpha-tocopherulate, and their ability to inhibit lipid peroxidation in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals: tert-butyl hydroperoxide and 2,2'-azobis-(2-amidinopropane). We also compared the antioxidant efficiency of the ferulate derivatives obtained through two different synthetic runs, and of a tocopherulate derivative prepared from 6-carboxycellulose. This study showed that the designed systems, preserving the antioxidant activity of the free substrates, are more effective in protecting from tert-butyl hydroperoxide than from 2,2'-azobis-(2-amidinopropane). Moreover, the cellulose ferulate with the higher degree of substitution acted as the best antioxidant. |
Handle: | http://hdl.handle.net/11587/409466 |
Appare nelle tipologie: | Articolo pubblicato su Rivista |