In this study we report the synthesis and characterisation of cellulose ferulate, lipoate and alpha-tocopherulate, and their ability to inhibit lipid peroxidation in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals: tert-butyl hydroperoxide and 2,2'-azobis-(2-amidinopropane). We also compared the antioxidant efficiency of the ferulate derivatives obtained through two different synthetic runs, and of a tocopherulate derivative prepared from 6-carboxycellulose. This study showed that the designed systems, preserving the antioxidant activity of the free substrates, are more effective in protecting from tert-butyl hydroperoxide than from 2,2'-azobis-(2-amidinopropane). Moreover, the cellulose ferulate with the higher degree of substitution acted as the best antioxidant.
Design and synthesis of cellulose derivatives with antioxidant activity
BLOISE, ERMELINDA;PUOCI, Francesco;
2008-01-01
Abstract
In this study we report the synthesis and characterisation of cellulose ferulate, lipoate and alpha-tocopherulate, and their ability to inhibit lipid peroxidation in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals: tert-butyl hydroperoxide and 2,2'-azobis-(2-amidinopropane). We also compared the antioxidant efficiency of the ferulate derivatives obtained through two different synthetic runs, and of a tocopherulate derivative prepared from 6-carboxycellulose. This study showed that the designed systems, preserving the antioxidant activity of the free substrates, are more effective in protecting from tert-butyl hydroperoxide than from 2,2'-azobis-(2-amidinopropane). Moreover, the cellulose ferulate with the higher degree of substitution acted as the best antioxidant.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.