Current-voltage characteristics of metal-protein-metal structures made of proteorhodopsin and bacteriorhodopsin are modeled by using a percolation-like approach. Starting from the tertiary structure pertaining to the single protein, an analogous resistance network is created. Charge transfer inside the network is described as a sequential tunneling mechanism and the current is calculated for each value of the given voltage. The theory is validated with available experiments, in dark and light. The role of the tertiary structure of the single protein and of the mechanisms responsible for the photo-activity is discussed.
Modeling current-voltage charateristics of proteorhodopsin and bacteriorhodopsin: towards an optoelectronics based on proteins
ALFINITO, ELEONORA;REGGIANI, Lino
2016-01-01
Abstract
Current-voltage characteristics of metal-protein-metal structures made of proteorhodopsin and bacteriorhodopsin are modeled by using a percolation-like approach. Starting from the tertiary structure pertaining to the single protein, an analogous resistance network is created. Charge transfer inside the network is described as a sequential tunneling mechanism and the current is calculated for each value of the given voltage. The theory is validated with available experiments, in dark and light. The role of the tertiary structure of the single protein and of the mechanisms responsible for the photo-activity is discussed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.