Hyperhidrosis, or excessive sweating, is an overlooked and potentially disabling symptom, which is often seen in social anxiety disorder. In this work an innovative advanced textile material was developed for application in the management of excessive sweating, preparing a drying yarn providing improved comfort. Hybrid cotton/hydrogel yarns were obtained by combining cotton with superabsorbent hydrogels through an optimization study focused on the achievement of the most promising product in terms of absorption properties and resistance to washings. Swelling and washing tests were performed using different hydrogels, and the effect of an additional crosslinking on the materials was also evaluated by testing different solutions containing Al(3+) and Ca(2+) ions. Scanning electron microscopy and infrared spectroscopy analyses were adopted to characterize morphology and chemical structure of the hydrogels undergoing different production processes. The biocompatibility of the hybrid fabrics was demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) through the extract method.

Development of hybrid cotton/hydrogel yarns with improved absorption properties for biomedical applications

POLLINI, MAURO;PALADINI, FEDERICA;SANNINO, Alessandro;MAFFEZZOLI, Alfonso
2016-01-01

Abstract

Hyperhidrosis, or excessive sweating, is an overlooked and potentially disabling symptom, which is often seen in social anxiety disorder. In this work an innovative advanced textile material was developed for application in the management of excessive sweating, preparing a drying yarn providing improved comfort. Hybrid cotton/hydrogel yarns were obtained by combining cotton with superabsorbent hydrogels through an optimization study focused on the achievement of the most promising product in terms of absorption properties and resistance to washings. Swelling and washing tests were performed using different hydrogels, and the effect of an additional crosslinking on the materials was also evaluated by testing different solutions containing Al(3+) and Ca(2+) ions. Scanning electron microscopy and infrared spectroscopy analyses were adopted to characterize morphology and chemical structure of the hydrogels undergoing different production processes. The biocompatibility of the hybrid fabrics was demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) through the extract method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/405051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact