In this article, we investigate the balanced condition and the existence of an Engliš expansion for the Taub-NUT metrics on ℂ^2. Our first result shows that a Taub-NUT metric on ℂ^2 is never balanced unless it is the flat metric. The second one shows that an Engliš expansion of the Rawnsley's function associated to a Taub-NUT metric always exists, while the coefficient a_3 of the expansion vanishes if and only if the Taub-NUT metric is indeed the flat one.

Some remarks on the Kähler geometry of the Taub-NUT metrics

ZEDDA, MICHELA;
2012-01-01

Abstract

In this article, we investigate the balanced condition and the existence of an Engliš expansion for the Taub-NUT metrics on ℂ^2. Our first result shows that a Taub-NUT metric on ℂ^2 is never balanced unless it is the flat metric. The second one shows that an Engliš expansion of the Rawnsley's function associated to a Taub-NUT metric always exists, while the coefficient a_3 of the expansion vanishes if and only if the Taub-NUT metric is indeed the flat one.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/403775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact