The paper focuses on a near-field wireless power transmission link consisting of two magnetically coupled inductances. The case of a resonant coupling realized by adding appropriate compensating capacitances is solved. By using a network formalism, the link is modeled as a two-port network and rigorously analyzed in the case where both the input impedance and the load are specified. In particular, it is demonstrated that there is just one optimum design of the network that allows maximizing both the efficiency and the active power on the load. Closed-form design formulas for the optimum design are presented and validated by circuital simulations.
Rigorous design of matched wireless power transfer links based on inductive coupling
MONTI, GIUSEPPINA;TARRICONE, Luciano
2016-01-01
Abstract
The paper focuses on a near-field wireless power transmission link consisting of two magnetically coupled inductances. The case of a resonant coupling realized by adding appropriate compensating capacitances is solved. By using a network formalism, the link is modeled as a two-port network and rigorously analyzed in the case where both the input impedance and the load are specified. In particular, it is demonstrated that there is just one optimum design of the network that allows maximizing both the efficiency and the active power on the load. Closed-form design formulas for the optimum design are presented and validated by circuital simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.