Top-down trophic cascades are well known in many autotrophic systems, yet their role in heterotrophic food webs is less clear. We collated data from 78 investigations and applied meta-analysis to evaluate the strength of detrital trophic cascades in freshwater and terrestrial food webs. Predators exerted significant, indirect controls on detrital resources, in line with theoretical predictions, whereas this was not the case for omnivores, suggesting that detritivory prevailed over predation and disrupted trophic cascades. Significant relationships were observed for both types of consumer in terms of their responses to detrital quality: specifically, unimodal curves across C:N and N:P gradients were the best fits for predators, whilst cascade strength responses to detrital quality were saddle shaped. These insights suggest that while predatory strategy is determining cascades within detrital-based systems, resource quality has bottom-up role effects on predators and on preferential consumption by omnivores. As such, these environmental responses seem to mirror some provisioning and supporting services; our findings are discussed within conceptual frameworks related to ecological stoichiometry and ecosystem services.

Detrital Dynamics and Cascading Effects on Supporting Ecosystem Services

MANCINELLI, GIORGIO
Primo
Membro del Collaboration Group
;
2015-01-01

Abstract

Top-down trophic cascades are well known in many autotrophic systems, yet their role in heterotrophic food webs is less clear. We collated data from 78 investigations and applied meta-analysis to evaluate the strength of detrital trophic cascades in freshwater and terrestrial food webs. Predators exerted significant, indirect controls on detrital resources, in line with theoretical predictions, whereas this was not the case for omnivores, suggesting that detritivory prevailed over predation and disrupted trophic cascades. Significant relationships were observed for both types of consumer in terms of their responses to detrital quality: specifically, unimodal curves across C:N and N:P gradients were the best fits for predators, whilst cascade strength responses to detrital quality were saddle shaped. These insights suggest that while predatory strategy is determining cascades within detrital-based systems, resource quality has bottom-up role effects on predators and on preferential consumption by omnivores. As such, these environmental responses seem to mirror some provisioning and supporting services; our findings are discussed within conceptual frameworks related to ecological stoichiometry and ecosystem services.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/396380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact