A T-spline-based isogeometric analysis is applied to frictional contact problems between deformable bodies in the context of large deformations. The continuum is discretized with cubic T-splines and cubic NURBS (Non-Uniform Rational B- Splines) for comparison purposes. A Gauss-point-to-surface (GPTS) formulation is combined with the penalty method to treat the normal and friction contact constraints in the discretized setting. It is demonstrated that the proposed formulation combined with analysis-suitable T-spline interpolations, is a computationally accurate and efficient technology for local and global solutions of contact problems. T-spline analysis models are generated using commercially available T-spline modeling software without intermediate mesh generation or geometry clean-up steps
T-splines discretizations for large deformation contact problems
DIMITRI, ROSSANA;ZAVARISE, Giorgio
2015-01-01
Abstract
A T-spline-based isogeometric analysis is applied to frictional contact problems between deformable bodies in the context of large deformations. The continuum is discretized with cubic T-splines and cubic NURBS (Non-Uniform Rational B- Splines) for comparison purposes. A Gauss-point-to-surface (GPTS) formulation is combined with the penalty method to treat the normal and friction contact constraints in the discretized setting. It is demonstrated that the proposed formulation combined with analysis-suitable T-spline interpolations, is a computationally accurate and efficient technology for local and global solutions of contact problems. T-spline analysis models are generated using commercially available T-spline modeling software without intermediate mesh generation or geometry clean-up stepsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.