This paper reports an investigation into the aging of pyrolyzed cobalt/polypyrrole (Co/PPy) oxygen reduction reaction (ORR) electrocatalysts, based on quasi-in-situ photoelectron microspectroscopy. The catalyst precursor was prepared by potentiostatic reverse-pulse coelectrodeposition from an acetonitrile solution on graphite. Accelerated aging was obtained by quasi-in-situ voltammetric cycling in an acidic electrolyte. Using photo-electron imaging and microspectroscopy of single Co/PPy grains at a resolution of 100 nm, we tracked the ORR-induced changes in the morphology and chemical state of the pristine material, consisting of uniformly distributed ∼20 nm nanoparticles, initially consisting of a mixture of Co(II) and Co(III) oxidation states in almost equal amounts. The evolution of the Co 2p, O 1s, and N 1s spectra revealed that the main effects of aging are a gradual loss of the Co present at the surface and the reduction of Co(III) to Co(II), accompanied by the emergence and growth of a N 1s signal, corresponding to electrocatalytically active C-N sites.

Quasi-in-situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction

BOCCHETTA, PATRIZIA
Writing – Original Draft Preparation
;
BOZZINI, Benedetto
Writing – Review & Editing
;
2014-01-01

Abstract

This paper reports an investigation into the aging of pyrolyzed cobalt/polypyrrole (Co/PPy) oxygen reduction reaction (ORR) electrocatalysts, based on quasi-in-situ photoelectron microspectroscopy. The catalyst precursor was prepared by potentiostatic reverse-pulse coelectrodeposition from an acetonitrile solution on graphite. Accelerated aging was obtained by quasi-in-situ voltammetric cycling in an acidic electrolyte. Using photo-electron imaging and microspectroscopy of single Co/PPy grains at a resolution of 100 nm, we tracked the ORR-induced changes in the morphology and chemical state of the pristine material, consisting of uniformly distributed ∼20 nm nanoparticles, initially consisting of a mixture of Co(II) and Co(III) oxidation states in almost equal amounts. The evolution of the Co 2p, O 1s, and N 1s spectra revealed that the main effects of aging are a gradual loss of the Co present at the surface and the reduction of Co(III) to Co(II), accompanied by the emergence and growth of a N 1s signal, corresponding to electrocatalytically active C-N sites.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/393313
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact