We examined the bacterial accumulation and digestion in the alien polychaete Branchiomma bairdi. Microbiological analyses were performed on worm homogenates from "unstarved" and "starved" individuals and on seawater from the same sampling site (Ionian Sea, Italy). Densities of culturable heterotrophic bacteria (22. °C), total culturable bacteria (37. °C) and vibrios were measured on Marine Agar 2216, Plate Count Agar and TCBS Agar, respectively. Microbial pollution indicators were determined by the most probable number method. B. bairdi was able to accumulate all the six considered microbiological groups which, however, differ in their resistance to digestion. B. bairdi results more efficient than the other two co-occurring sabellids in removing bacteria suggesting that it may counteract the effects of microbial pollution playing a potential role for in situ bioremediation. Thus a potential risk, such as the invasion of an alien species, could be transformed into a benefit with high potential commercial gain and economic feasibility.
Microbiological accumulation by the Mediterranean invasive alien species Branchiomma bairdi (Annelida, Sabellidae): Potential tool for bioremediation
LICCIANO, Margherita;GIANGRANDE, Adriana
2014-01-01
Abstract
We examined the bacterial accumulation and digestion in the alien polychaete Branchiomma bairdi. Microbiological analyses were performed on worm homogenates from "unstarved" and "starved" individuals and on seawater from the same sampling site (Ionian Sea, Italy). Densities of culturable heterotrophic bacteria (22. °C), total culturable bacteria (37. °C) and vibrios were measured on Marine Agar 2216, Plate Count Agar and TCBS Agar, respectively. Microbial pollution indicators were determined by the most probable number method. B. bairdi was able to accumulate all the six considered microbiological groups which, however, differ in their resistance to digestion. B. bairdi results more efficient than the other two co-occurring sabellids in removing bacteria suggesting that it may counteract the effects of microbial pollution playing a potential role for in situ bioremediation. Thus a potential risk, such as the invasion of an alien species, could be transformed into a benefit with high potential commercial gain and economic feasibility.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.