Recently, with the advent of modern technologies, various marine organisms including algae are being studied as sources of natural substances effective on classical microorganisms and able to also combat the new trend of acquired resistance in microbes. In the present study the antimicrobial activity of the lipidic extract of the green seaweed Cladophora rupestris collected in a Mediterranean area, in two sampling periods (January and April), was assayed. The chemical characterization of the lipidic fractions was performed by gas-chromatography and multinuclear and multidimensional \{NMR\} spectroscopy. In the lipidic extract of C. rupestris collected in January an antibacterial activity against Enterococcus sp., Streptococcus agalactiae and Vibrio cholerae non-O1 was recorded; by contrast, bacterial inhibition was measured on several Vibrio species only in April. The fatty acid profile of C. rupestris lipidic extract, analyzed by gas chromatography, resulted mainly composed of palmitic, myristic, oleic, α linolenic, palmitoleic and linoleic acids. Moreover, since α-linolenic acid was the predominant ω3 fatty acid in April, we suggest its involvement in the antibacterial activity observed in this month, taking also into account that pure α-linolenic acid resulted effective towards some vibrios strains. C. rupestris fatty acid profile revealed also an interesting composition in polyunsaturated fatty acids in both the considered periods with the ω6/ω3 ratio lower than 1, leading to conclude that this macroalga may be employed as a natural source of ω3. Finally, the 1H \{NMR\} spectrum in \{CDCl3\} of algal lipid fractions showed the characteristic signals of saturated (SAFAs) and unsaturated fatty acids (UFAs) as well as other metabolites and a marked difference in free fatty acids (FFAs) content for the two examined algal lipid fractions. It is noteworthy that C. rupestris lipidic extracts show, by \{NMR\} spectroscopy, the signal pattern of polyhydroxybutyrate, a natural biocompatible and biodegradable polymer. In conclusion, on account of its antimicrobial activity, nutritional value and bioplastic content, C. rupestris lipidic extract can be considered a promising source for future biotechnological applications.

Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract

FANIZZI, Francesco Paolo;
2014-01-01

Abstract

Recently, with the advent of modern technologies, various marine organisms including algae are being studied as sources of natural substances effective on classical microorganisms and able to also combat the new trend of acquired resistance in microbes. In the present study the antimicrobial activity of the lipidic extract of the green seaweed Cladophora rupestris collected in a Mediterranean area, in two sampling periods (January and April), was assayed. The chemical characterization of the lipidic fractions was performed by gas-chromatography and multinuclear and multidimensional \{NMR\} spectroscopy. In the lipidic extract of C. rupestris collected in January an antibacterial activity against Enterococcus sp., Streptococcus agalactiae and Vibrio cholerae non-O1 was recorded; by contrast, bacterial inhibition was measured on several Vibrio species only in April. The fatty acid profile of C. rupestris lipidic extract, analyzed by gas chromatography, resulted mainly composed of palmitic, myristic, oleic, α linolenic, palmitoleic and linoleic acids. Moreover, since α-linolenic acid was the predominant ω3 fatty acid in April, we suggest its involvement in the antibacterial activity observed in this month, taking also into account that pure α-linolenic acid resulted effective towards some vibrios strains. C. rupestris fatty acid profile revealed also an interesting composition in polyunsaturated fatty acids in both the considered periods with the ω6/ω3 ratio lower than 1, leading to conclude that this macroalga may be employed as a natural source of ω3. Finally, the 1H \{NMR\} spectrum in \{CDCl3\} of algal lipid fractions showed the characteristic signals of saturated (SAFAs) and unsaturated fatty acids (UFAs) as well as other metabolites and a marked difference in free fatty acids (FFAs) content for the two examined algal lipid fractions. It is noteworthy that C. rupestris lipidic extracts show, by \{NMR\} spectroscopy, the signal pattern of polyhydroxybutyrate, a natural biocompatible and biodegradable polymer. In conclusion, on account of its antimicrobial activity, nutritional value and bioplastic content, C. rupestris lipidic extract can be considered a promising source for future biotechnological applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/391294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact