We report theoretical and experimental investigations of the optical response of two-dimensional periodic arrays of rectangular gold nanopatches grown on a monolayer graphene placed on a glass substrate. We discuss the numerical analysis and optical characterization by means of reflection spectra and show that rectangular nanopatches display a polarization-dependent response, at normal incidence, which leads to double plasmonic resonances due to the Wood anomaly. We detail the fabrication process highlighting how the resist primer and the adhesion layer can reduce and impede the graphene doping due to the environment and to the nanopatches, respectively, by means of Raman spectroscopy.

Fabrication of doubly resonant plasmonic nanopatch arrays on graphene

DE VITTORIO, Massimo;
2013-01-01

Abstract

We report theoretical and experimental investigations of the optical response of two-dimensional periodic arrays of rectangular gold nanopatches grown on a monolayer graphene placed on a glass substrate. We discuss the numerical analysis and optical characterization by means of reflection spectra and show that rectangular nanopatches display a polarization-dependent response, at normal incidence, which leads to double plasmonic resonances due to the Wood anomaly. We detail the fabrication process highlighting how the resist primer and the adhesion layer can reduce and impede the graphene doping due to the environment and to the nanopatches, respectively, by means of Raman spectroscopy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/389473
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact