We propose the realization of a compact fully-passive biotelemetry tag composed of a high-electron mobility transistor (HEMT) connected to a wireless link. The Gallium Arsenide based gateless HEMT serves both as the environmental sensing element and as the amplitude modulator of the carrier signal received by the antenna. A prototype demonstrator operating in the MHz range has been developed: it consists of an array of transistors with different gate geometries and two spiral loop resonators implementing the wireless link. More specifically, one resonator (Tag-resonator) is connected to the array of transistors, while the other one (Reader-resonator) is connected to a power generator/reader device; the wireless link uses the magnetic coupling between the two resonators. Experimental results demonstrate that the reader-resonator exhibits an intensity modulation of the resonance dip depending on the voltage applied to the HEMT gate. These results will be used as a guideline for the realization of biocompatible sub-millimeter tags operating in the Gigahertz frequency range.
Wireless system for biological signal recording with Gallium Arsenide High Electron Mobility Transistors as sensing elements Microelectronic Engineering
MONTI, GIUSEPPINA;TARRICONE, Luciano;DE VITTORIO, Massimo
2013-01-01
Abstract
We propose the realization of a compact fully-passive biotelemetry tag composed of a high-electron mobility transistor (HEMT) connected to a wireless link. The Gallium Arsenide based gateless HEMT serves both as the environmental sensing element and as the amplitude modulator of the carrier signal received by the antenna. A prototype demonstrator operating in the MHz range has been developed: it consists of an array of transistors with different gate geometries and two spiral loop resonators implementing the wireless link. More specifically, one resonator (Tag-resonator) is connected to the array of transistors, while the other one (Reader-resonator) is connected to a power generator/reader device; the wireless link uses the magnetic coupling between the two resonators. Experimental results demonstrate that the reader-resonator exhibits an intensity modulation of the resonance dip depending on the voltage applied to the HEMT gate. These results will be used as a guideline for the realization of biocompatible sub-millimeter tags operating in the Gigahertz frequency range.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.