In the last few years, a new class of smart multifunctional photoelectrochemical devices has been attracting the interest of several academic institutions and industrial companies: photovoltachromic cells, combining the features of photoelectrochromic cells with those of dye-sensitized solar cells. Here, we report the results of a detailed electrochemical analysis aiming at investigating the electrochemical behavior of these complex photoelectrochemical devices. In particular, we have been focused on the effect of Li+ ions displacement during the coloration of the electrochromic tungsten oxide on the performances of the photovoltaic unit. As we had previously observed striking differences between the performances of the barely photovoltaic mode (with the tungsten oxide in the bleached state) and the photovoltachromic mode (with the tungsten oxide in the colored state), we thus attempted to provide a reasonable physical interpretation to the observed phenomena. © 2013 John Wiley & Sons, Ltd.

Effect of lithium intercalation on the photovoltaic performances of photovoltachromic cells

GIGLI, Giuseppe
2013-01-01

Abstract

In the last few years, a new class of smart multifunctional photoelectrochemical devices has been attracting the interest of several academic institutions and industrial companies: photovoltachromic cells, combining the features of photoelectrochromic cells with those of dye-sensitized solar cells. Here, we report the results of a detailed electrochemical analysis aiming at investigating the electrochemical behavior of these complex photoelectrochemical devices. In particular, we have been focused on the effect of Li+ ions displacement during the coloration of the electrochromic tungsten oxide on the performances of the photovoltaic unit. As we had previously observed striking differences between the performances of the barely photovoltaic mode (with the tungsten oxide in the bleached state) and the photovoltachromic mode (with the tungsten oxide in the colored state), we thus attempted to provide a reasonable physical interpretation to the observed phenomena. © 2013 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/386263
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact