Partial shading is a commonly encountered mismatch problem in a photovoltaic system. In the drawing near perspective of their massive building integration, dye solar cell (DSC) modules may realistically receive different levels of irradiance, a situation similar to partial shading. In these conditions, the electrical characteristics of the DSC module significantly change. Here a general model for the description and the analysis of dye solar generators is proposed. A new equivalent circuit for DSCs has been developed that is characterized by the introduction of a second diode, capable to conveniently take into account the behavior of the reverse-biased cell/s. An experimental demonstration of the proposed two-diode model's validity is provided. A detailed description, based on numerical analysis, of the influence of partial shading on the photovoltaic performances of a DSC module made by four W-connected cells is given. We here demonstrate that the implementation of a two-diode model allows an excellent matching between the experimentally measured I-V characteristics of the partially shaded module and the simulated ones. Copyright (c) 2012 John Wiley & Sons, Ltd.

A new electrical model for the analysis of a partially shaded dye-sensitized solar cells module

Giannuzzi Roberto;GIGLI, Giuseppe
2013-01-01

Abstract

Partial shading is a commonly encountered mismatch problem in a photovoltaic system. In the drawing near perspective of their massive building integration, dye solar cell (DSC) modules may realistically receive different levels of irradiance, a situation similar to partial shading. In these conditions, the electrical characteristics of the DSC module significantly change. Here a general model for the description and the analysis of dye solar generators is proposed. A new equivalent circuit for DSCs has been developed that is characterized by the introduction of a second diode, capable to conveniently take into account the behavior of the reverse-biased cell/s. An experimental demonstration of the proposed two-diode model's validity is provided. A detailed description, based on numerical analysis, of the influence of partial shading on the photovoltaic performances of a DSC module made by four W-connected cells is given. We here demonstrate that the implementation of a two-diode model allows an excellent matching between the experimentally measured I-V characteristics of the partially shaded module and the simulated ones. Copyright (c) 2012 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/386254
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact