We present some multiplicity results concerning semilinear elliptic Dirichlet problems with jumping nonlinearities where the jumping condition involves a set of high eigenvalues not including the first one. Using a variational method we show that the number of solutions may be arbitrarily large provided the number of jumped eigenvalues is large enough. Indeed, we prove that for every positive integer k there exists a positive integer n(k) such that, if the number of jumped eigenvalues is greater than n(k), then the problem has at least a solution which presents k peaks. Moreover, we describe the asymptotic behaviour of the solutions as the number of jumped eigenvalues tends to infinity; in particular, we analyse some concentration phenomena of the peaks (near points or suitable manifolds), we describe the asymptotic profile of the rescaled peaks, etc …

Elliptic equations with jumping nonlinearities involving high eigenvalues

PASSASEO, Donato
2014-01-01

Abstract

We present some multiplicity results concerning semilinear elliptic Dirichlet problems with jumping nonlinearities where the jumping condition involves a set of high eigenvalues not including the first one. Using a variational method we show that the number of solutions may be arbitrarily large provided the number of jumped eigenvalues is large enough. Indeed, we prove that for every positive integer k there exists a positive integer n(k) such that, if the number of jumped eigenvalues is greater than n(k), then the problem has at least a solution which presents k peaks. Moreover, we describe the asymptotic behaviour of the solutions as the number of jumped eigenvalues tends to infinity; in particular, we analyse some concentration phenomena of the peaks (near points or suitable manifolds), we describe the asymptotic profile of the rescaled peaks, etc …
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/381597
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact